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Executive Summary

This report summarizes the progress made during SBIR Phase | project titled
Assembly Modeling Kernel. The Phase | project developed enabling technologies
that supported several related objectives, which as a whole produces a systemic
effect that is more than the sum of its parts.

The objectives explored during Phase | were:

1. Representations that span conceptual designs and physical laws /constraints
that drive decisions

Concurrent evaluation of design for manufacturability, assembly, and 'affordability
Content and context based retrieval and indexing of product designs

4. World Wide Web based approaches for creating an information infrastructure for
collaborative design

Together, achievement of these objectives will result in a design environment for
assemblies that will provide order of magnitude improvement in modeling,
simulation, engineering, and manufacturing of assemblies by a cross functional team
that is not co-located.

First, we developed a class lattice that unified solid models with assembly models
and kinematic models (kinematic constraints). Based on this unified model,
algorithms were implemented that analyzed the configuration space (C-space) of a
mechanism. A variety of computational geometry functions associated with the class
lattice were implemented and tested, providing the computational base for
functionalities related to C-space analysis. This work provided us with a
representation that unified conceptual designs and physical constraints.

Second, in order to support concurrent evaluation, algorithms were also designed
and implemented for evaluating alternative sequences of assembly operations and
for performing dis-assembly analysis to test assemblability of products. Furthermore,
design work towards assembly tolerancing using the above mentioned
computational geometry functions was also performed.

Third, alternative key modeling which allows indexing and retrieval of product
designs based on group technology classification was investigated. A class system
which allowed mixing-in of appropriate categorization keys was implemented.

Finally, using Knowledge Query Manipulation Language (KQML), WWW, and a
public domain Object Oriented Database (OODB), we explored the development of a
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collaborative infrastructure that worked across WWW. A significant portion of the
work in this direction was performed as part of another SBIR Phase Il project.
However, as part of this Phase | project, we explored the design of down-loadable
applets that wil allow interactive interaction across WWW for complex 3D
information.

The work performed during Phase | provides a strong foundation for developing a
collaborative, design, simulation, and engineering environment for complex
assemblies that works across WWW. We intend to submit a Phase Il proposal that
completes this vision and develops a beta quality product.
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INTRODUCTION

This report summarizes the progress made during the six-month funding period of
SBIR Phase | project Assembly Modeling Kernel. After examining the feasibility of
our various project goals, we opted to concentrate on the development of innovative
data structures related to assembly-centered modeling and data modeling, within the
framework of concurrent process design. During Phase One, we designed the
classes and algorithms required for the representation and analysis of assemblies,
including algorithms for analyzing an assembly’s free space, and to support the
combinatoric evaluation of alternative assembly sequences. Functions concerned
with spatial analysis and computational geometry were implemented and tested,
providing a computational basis for the geometric analysis of free space,
disassembly analysis based on geometric feasibility, and assembly tolerancing
based on variational modeling. We also investigated the development of a WWW
based data modeling facility to support the concurrent design and analysis of
assembly and manufacturing processes. Our primary focus in Phase Two will be to
develop an extensible application framework devoted to the design and analysis of
mechanisms and assembly processes. The assembly-centered functionalities of the
kernel will include free space modeling, combinatorics modeling, data modeling, and
assembly tolerancing.

Motivated by the lack of assembly-related capabilities among existing product
modelers, an early goal of this project was to develop a part modeler whose
functionalities included variational geometric modeling. However, the adequacy of
existing modelers outside of the domain of assembly, as well as the time expenditure
that would be required, led us to conclude that our efforts would be better spent
outside the realm of part modeling, per se, concentrating instead on the
development of assembly centered modeling tools capable of interfacing with an
“anonymous” part modeler. To support interaction with a generic solid modeler, we
developed a class lattice for representing modelers, solids, surface features, and
geometric entities.

Other functionalities examined during Phase One include:

1. alternative key modeling, which allows the user to access parts and assemblies
with keys other than the name of the part or assembly and which facilitates the
classification of assemblies into group technology categorizations

2. physical connection modeling, permitting the generation of a bond graph to
simulate power flow between the parts of an assembly

We opted not to peruse physical connection modeling, since power flow dynamics
must be specified by the user, and it is unclear how to standardize that input in a
manner that will be meaningful for a wide variety of mechanisms and types of
physical connections. The use of medial-axis transforms for generating finite-

PAGE 4




ASSEMBLY MODELING KERNEL PHASE | REPORT

element meshes lies in the realm of solid modeling, which is outside of our chosen
domain of assembly modeling.
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PROJECT GOALS

The primary goal of this project is to develop assembly-centered modeling tools to
support the design and analysis of mechanisms and assembly processes by a group
of individuals. An extensible kernel was prototyped to facilitate the C-space analysis
and assembly tolerancing of mechanisms, as well as combinatorial modeling and
evaluation of alternative assembly sequences. Innovative data structures are being
developed to support the concurrent engineering of mechanical parts and
assemblies, within the cross-functional domains of parts modeling, mechanism
design, and assembly process planning. A data modeling functionality is also being
developed, to manage user-defined relationships across the cross-functional
domains, with an added capability of alternative key modeling, enabling users to
access parts and assemblies with keys based on design, engineering, or process
knowledge over WWW. In addition to facilitating mechanism design, the data
modeling facility will support the comparative evaluation of alternative assembly
plans and processes.

Our objective is to deliver, at the end of Phase Il an extensible framework that
provides an order of magnitude improvement in concurrent development of
assemblies of mechanical products. Figure 0 shows an architectural overview of this

Figure 0 - Logical Architecture of AMK

World Wide Web

SIMPLE
Computational Combinatorics Tolerancing
Geometry
Unified Virtual Database
Parts Assembly Mechanism

framework. During Phase | we prototyped all aspects of this framework excluding
implementation of the tolerancing algorithms. In the following chapters we describe
each of the functionalities.
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Assembly-Centered Modeling

To fill the need for assembly-related capabilities not currently provided by geometric
modelers, we seek to augment the functionalities of current modelers with the
assembly centered capabilities of C-space analysis, combinatorial modeling of
assembly plans, and assembly tolerancing. The assembly-based modeling tools will
be designed to interface with ““anonymous” part modelers, allowing a broad range of
users to exploit our assembly-centered functionalities. Computational primitives will
be provided to create assemblies through generic modeling operations, and to
analyze and modify the assembly models within the framework of data modeling.

Mechanical assembly model may be constructed in the form of a kinematic tree,
whose joints might represent either physical joints ( prismatic, planar, rotary,
universal, or gimbal) , liaisons denoting fixed relationships between fastened parts,
or artificial pose constraints imposed by the user, to restrict a part's motion to a
specified trajectory The varied semantics of the joint make possible a unified
representation of kinematic mechanisms, assemblies composed of fastened
subassemblies, and assembly motion trajectories. Accordingly, the class lattice for
representing jointed assemblies simultaneously supports mechanism design and
analysis, combinatorial analysis of alternative assembly sequences, and the design
of assembly operations and workspaces. These functionalites augment the
capabilities of existing solid modelers, whose assembly related functionalities are
relatively limited.

C-space Analysis

The analysis of the free space about a mechanism yields the set of internal
configurations and/or external poses that can be attained by the mechanism. C-
space analysis yields a C-space free, which represents the subset of poses in joint
and pose parameter space that the mechanisms can reach in the presence of
physical or artificial pose constraints imposed on its degrees of freedom. The free
space information produced through C-space analysis facilitates the design and
analysis of mechanical assemblies and manufacturing workspaces, as well as the
planning of mating trajectories for assembly operations. C-space analysis permits
the mechanism designer to note the effects of his or her design decisions on the
extent and quality of the mechanism’s free space. Downstream activities related to
assembly task design need to accommodate the mechanism’s free space when
planning paths to avoid obstacles and selecting fixtures to immobilize the assembly
components.

In the context of our assembly-centered modeling goals, C-space analysis may be
performed with respect to various types of assembly parameters, such as the pose
of a subassembly relative to a reference frame or a second subassembly; the
internal joint parameters of an assembly; or the tolerance variables associated with
part dimensions and mechanism descriptors. While the total number of parameters
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defining a C-space is limited by computational complexity considerations, assembly
parameters of various types may be combined as desired, enabling the mechanism
designer to observe the effects of various selected part dimensions and tolerances
on the mechanism’s free space, and allowing the assembly process designer to plan
trajectories within the composite C-space of an assembly’s pose and joint
parameters. Moreover, the process designer may impose artificial constraints on
some of the assembly’s degrees of freedom (e.g., confining the assembly pose to a
linear path, or confining a joint parameter to a fixed value or interval), while allowing
others to vary throughout their domains.

The Puma robot in Figure 1 provides an example of a mechanism whose C-space
may be analyzed and modified with respect to design decisions, such as the
positioning and dimensions of the separate assembly components. Figure 1
illustrates an interference zone in the free space of the Puma’s second joint (the
“elbow”), whose associated link is obstructed by the Puma’s base connector. The
interference produces a gap in the free space of the elbow, which varies with the
positioning of the ancestral, first joint. The Puma’s C-space may be visualized in the
parameter space of both joints, as shown in Figure 2, whose 2-D grid illustrates their
composite C-space. With the zeroth (base) joint held frozen at a constant angle, the
lighter regions in the 2-D grid indicate the “legal” joint angle pairs for which no
interference exists between the components of the Puma. The dark horizontal
region represents the base connector’s interference with joint one, as well as joint
two. The left-to-right variation in the horizontal region arises from the variability of the
elbow’s interference zone, which grows and shrinks with the movement of joint one.
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Figure 1. Interference zone in the free space of the Puma’s second joint.

The dark vertical region represents a separate interference zone in the elbow’s free

space, arising from interference with vertical ““shoulder” link, which is situated on
top of the base.

PAGE 9




ASSEMBLY MODELING KERNEL PHASE | REPORT

The presence of the C-space obstacles depicted in Figure 2 suggest the need for a
design modification in the Puma mechanism, such as flipping the robot’s ““forearm”

Figure 2. C-space of the Puma’s first two joints.

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0

b,

about its elbow, yielding the modified design shown in Figure 3.

This qualitative design decision eliminates much of the interference between the
links of the Puma, in particular the interference between the
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forearm and the rest of the Puma. The resulting C-space retains only a single
interference zone, where the first joint's free space is still occluded by the base
connector. This simple example illustrates the utility of the C-space analysis
functionality as an aid in qualitative decision-making during the design of mechanical
assembly models.

Figure 3. The C-space produced by flipping the forearm about the elbow.

6.0 10 28 30 40 590

b,

To demonstrate the role of C-space analysis in quantitative decision-making related
to model dimensions, we refer to Figure 4. As revealed in the associated C-space
grids, the various choices of Puma base length produce varying degrees of
interference between the base connector and the upper and lower arms of the
Puma. The extent and nature of a mechanism’s free space is an important
consideration to address during the design process, and our C-space functionality
will serve to facilitate the designer's grasp of the relationship between the design
variables and the C-space characteristics of the mechanism.
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Figure 4. C-spaces associated with increasing base length
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Combinatorial Analysis

The portion of the class lattice related to assembly modeling facilitates the
construction of assembly models comprised of solids joined together by liaison
joints. Each liaison represents the attachment of one solid to another, denoting
either a rigid, fastened relationship, such as a pair of glued surfaces, or a non-rigid
attachment, such as a loose insertion. A mechanism tree constructed with “liaison”
joints may be decomposed into a variety of alternative subassemblies, depending on
the order in which the liaisons are severed. Due to obstructing surfaces or fastener
inaccessibility, some liaisons must be joined (or severed) before others. To support
the enumeration and evaluation of alternative assembly plans, feasible liaison
orderings are represented in an AND/OR graph1, which represents all the alternative
orders in which the liaisons may be severed. Each sequence of liaison severing
operations represented in the graph corresponds to a feasible ordering of assembly
operations, in reverse. Given an AND/OR graph representation of alternative
assembly operation sequences, the set of alternative assembly plans may be
explored by traversing the different hyperarcs (OR’s) in the graph.

The combinatorics functionality of the assembly-centered modeling kernel will rely on
a graph-pruning process in which infeasible orderings of liaison severing operations
are identified and removed from the AND/OR graph. Traditional criteria for
evaluating the feasibility of severing a liaison include geometric and mechanical
feasibility, stability of the resulting subassemblies, and minimizing the number of
directions from which assembly operations need to be performed. We have focused
on the criteria of geometric and mechanical feasibility, which are at once the most
crucial, and the most computationally chalienging, criteria. Geometric feasibility is
concerned with the separability of two subassemblies along a trajectory, and
mechanical feasibility concerns accessibility of the fastener(s) associated with a
liaison. Geometric feasibility is evaluated in two stages:

1. Alocal mobility procedure searches for contacting surfaces on the two
subassemblies and determines if the surface relationships preclude relative
motion along the given trajectory. This procedure can be performed rapidly,
ruling out many liaison severing operations without proceeding to the global
stage.

2. A global separability test is performed along the given trajectory to detect
interference between the two subassemblies.

To illustrate the use of geometric feasibility analysis in assembly planning, we refer to
the alternator assembly in Figure 5.

" Homem de Mello, L.S., Sanderson, A.C. (1989), A correct and complete algorithm for the generation of
mechanical assembly sequences”, Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 56-61.
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Figure 5. An alternator assembly and its components.

This assembly is composed of five parts, which are connected via five liaisons.
Each liaison connects a pair of parts, so the five liaisons may be denoted by five part
pairs: A-D, B-C, C-D, C-E, and C-F. In this particular assembly, all of the parts
connect to the rotor shaft (C), with the exception of the rear housing (A), which
attatches to the front housing (D). Initially, only two liaisons may be severed in the
fully-assembled alternator: A-D or C-F. Liaison C-E, which involves the rotor shaft
and the fan, cannot be severed before liaison C-F, since the pulley (F) blocks the
path of the fan. Moreover, geometric feasibility testing reveals that the parts
connected to the rotor shaft must be disassembled in this order: F, E, D, B. While
this fact is readily apparent by simple inspection, liaison orderings are not so obvious
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in complex assemblies, underscoring the need for automatic enumeration and
evaluation of feasible assembly sequences.

A feasible disassembly sequence for the alternator assembly is shown in figure 6.

Figure 6. A feasible disassembly sequence

B-C

In this sequence, the rear housing is removed first, followed by the parts connected
to the rotor shaft, which are removed in the required order stated above. Figure 7
shows all feasible paths en masse. The paths in Figure 7 differ only in their
placement of liaison A-D in the sequence. The partial ordering of liaisons is
computed through geometric feasibility testing of different disassembly operations in
the various states of disassembly.
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Figure 7. All feasible disassembly sequences

Geometric tolerancing

The assembly-centered modeling kernel will also support the modeling of tolerances
in assemblies. Assembly tolerancing involves the calculation of part poses or pose
uncertainy zones for the toleranced parts in an assembly. Since the part
deformations allowed by part tolerance specifications usually prevent the assembled
parts from being placed in their nominal configurations and stated surface
relationships, feasible assembly part positions are analyzed to derive the expected
or worst-case assembly configurations. Analysis of the toleranced parts’ assembled
positions facilitates the evaluation of design functions, helping to determine if the
assembly model satisfies the design requirements.
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Assembly tolerancing involves the derivation of pose parameter constraints,
l.e., halfspace inequalities associated with nonoverlapping surface features.
The pose constraints are calculated by propagating dimensional and
geometric tolerance constraints to pose space. Given a set of tolerance
specifications for the dimensions and geometries of the parts, the relative
positions of the parts are either confined to uncertainty zones, estimated
heuristically, or derived algebraically.

In Fleming’sz algebraic approach to positioning toleranced assembly parts, the
pose and feature constraints associated with each part in the assembly are
expressed as symbolic equalities and inequalities. Extreme configurations of
the contacts are derived from part geometries and tolerance bounds,
producing symbolic constraints on the part positions. The resulting
expressions are simplified to yield the relative positions of the parts in the
assembly, or at least algebraic bounds on their uncertain poses. The
approach used by Sodhi and Turner® relies on heurstics and linear
programming to estimate the relative poses of the assembled parts, given a
set of worst-case part deformation values. To estimate the assembly
configuration associated with the specified part deformations, the assembled
parts are assumed to fall together into relative positions that approximate their
intended contact relationships as closely as possible. Using linear
programming to optimize the proximity of nominally-contacting parts and
surfaces, the assembled part poses are derived within a feasibility region
defined by the surface contact constraints.

To facilitate the design and analysis of assemblies comprised of geometrically
toleranced parts, the assembly modeling kernel will support the enumeration
of the pose constraints which arise from contact relationships in an assembly.
The pose constraints provided by the kernel may be used to compute
tolerance stack-up in an assembly. The automatic generation of pose
inequalities will be accomplished through the development of spatial analysis
algorithms that identify interacting pairs of surface features on adjacent parts
in an assembly model. The relevant feature pairs are those which constraint a
single degree of freedom in the relative poses of the two parts (for example,
vertex-face or edge-edge contacts between polyhedral parts) Each pose
constraint represents a nonlinear halfspace in 6-dimensional pose space,
characterized by a 5-dimensional C-surface. The pose constraints thus
generated may be treated as symbolic or numerical expressions in any

2 Fleming, A.D. (1989), A representation for geometrically toleranced parts”, in Woodwark, J. (Ed.) Geometric
Reasoning, Clarendon Press, U. K., pp. 141-167.

% Sodhi, R., Turner, J.U. (1994), “"Relative positioning of variational part models for design analysis”, Computer-
Aided Design, Vol. 26, No. 5, pp. 366-378.
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assembly part positioning technique. In their nonlinear, algebraic form, the
constraints provide pose inequalties for the symbolic algebra-based
techniques Alternatively, each pose constraint surface may be linearized
about its nominal part pose

Collaborative Information Infrastructure

Finally, an information infrastructure that will support collaborative, interactive
browsing and update of a common database of assembly related data over WWW is
key for the above functionalities to succeed. Several functionalities together provide
support for content based indexing, querying, and update. First, content based
indexing is supported through an object system that allows mixing-in of alternate
keys to a base class. Using this functionality, design, analysis, and engineering data
can be indexed according to their properties as well as other indexing schemes such
as group technology. Second, use of Knowledge Query Manipulation Language
(KQML) supports asynchronous querying and update of the common repository.
Third, integration of KQML over HTTP allows users from various locations to issues
queries and get results. Integration of KQML over the email infrastructure allows
users to get notified when items they are interested in change. Fourth, a down-
loadable view applet that supports 2D and 3D browsing (3D camera movement -
zoom, pan, etc.) of 2D and 3D graphical information over WWW, a relationship
facility that can be used to update multiple views when dependent views change, an
object system in combination with KQML which allows dynamic creation of views,
and ability to generate HTML on the fly allows the users to interact with the common
repository of assembly related data over WWW.
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PHASE ONE PROGRESS

During Phase One, we implemented a dynamic class lattice for representing generic
geometric modelers, solids, assemblies, and kinematic mechanisms and for mixing-
in content based indexing schemes. We also developed algorithms related to free
space analysis, combinatorial enumeration of assembly sequences, and geometric
feasibility of assembly operations. These data structures and algorithms were
implemented in the functional programming language SIMPLE, which implements
MIT Scheme, a meta class oriented object system, forward and backward chaining
rules, and KQML. The algorithms were tested to verify their correctness, producing
the C-spaces and assembly sequences that are illustrated in this report.

In addition, we prototyped a WWW based repository, dynamic creation of HTML
forms, and down-loadable 3D browsers. Finally, these activities Ileveraged
development efforts in other SBIR projects using which we developed SIMPLE.

Class lattice

A class lattice was developed for representing modelers, solids, and mechanism
trees. Implemented in the functional programming language SIMPLE, classes and
functions were designed for representing and manipulating geometric entities,
providing the essential functionalities, such as distance calculation, required by the
free space , tolerancing, and combinatorics algorithms. Classes including modeler,
model, face, edge, etc. were created to support interaction with a generic geometric
modeler, along with corresponding “'‘mix-in” classes pertaining to the Noodles
modeler (obtained from Carnegie Mellon University). Classes supporting the
representation of assemblies as mechanism trees include “link”, which relates an
assembly component to a joint, and “joint”, which can represent a mechanical joint
(prismatic, planar, rotary, universal, or gimbal) or a “liaison”, i.e., a fixed relationship
between two fastened parts. As implemented in SIMPLE, these classes and their
associated methods provide a basis for the development and testing of algorithms
for generating the discretized free space of a mechanical assembly, and for
evaluating the geometric feasibility of alternative assembly sequences.

The SIMPLE language supports mixing-in of alternative indexing schemes and we
designed a group technoiogy based indexing scheme that took advantage of this
capabiiity.

Utility functions for spatial analysis

Utility functions associated with spatial analysis were designed and implemented to
support the assembly-centered functionalities of C-space analysis, disassembly
analysis, and assembly tolerancing. The spatial analysis algorithms are concerned
with computing distances, performing orthogonal projections, and testing point set
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inclusion, as required by the higher-level assembly-centered algorithms. These
functions are primarily associated with the /ine and plane classes (see Appendix) A
higher-level distance calculation procedure, which computes distances between
solid models, relies on utility functions associated with the model, face, edge, and
vertex classes.

Relying on orthogonal projections and half-space predicates, these utility functions
verify that the closest points on a pair of solids lie on a specified pair of surface
features. The motivation behind such utility functions is as follows.

The C-space tree construction algorithm calls for repetitive distance calculations,
performed iteratively for incrementally increasing joint parameter values, to detect
possible interference between a mechanism link and an obstacle. Potentially time
intensive, the distance computations required by the C-space procedure were made
more efficient by adopting a technique described by Lin and Canny which exploits
the predictability of the closest surface features involved in successive distance
calculations. The distance measurement procedure applies only to convex solids, so
the original solids must be partitioned into convex primitives or replaced by a convex
bounding box Measuring the distance between two convex solids involves first
identifying the closest pair of surface features (vertices, edges, faces) on the two
solids, then measuring the distance between that pair of features. Lacking any a
priori knowledge of the closest features, the distance calculation procedure must
process all relevant pairs of features to find the closest pair. By recalling the closest
pair of features already computed for similar configurations, however, the closest
features can usually be predicted, or at least found to be located nearby the
predicted pair. Indeed, as the algorithm incrementally steps through a joint’s
parameter range, the distance from a swept link to an obstacle tends to involve the
same pair of closest features. Consequently, distance calculations are expedited by
keeping track of the ongoing pair of closest features, which are rapidly verified or
updated during each iteration of the C-space algorithm. Since the closest pair of
features tends to remain the same from one iteration to the next, and only a limited
number of inequality constraints need to be verified, the distances are arguably
computed in constant time.

To support the efficient, repetitive calculation of distances between convex primitive
shapes, special functions were developed for the face,edge, and vertex classes to
verify a point's satisfaction of a set of half-space constraints associated with a face,
edge, or vertex. If the point satisfies all of a given feature’s half-space constraints,
then the feature is verified to be the closest feature on the solid to the point in
question. If a half-space constraint is not satisfied, the algorithm “walks” to the
adjacent feature associated with the violated constraint, and repeats the verification

4 Lin, M.C., Canny, J.F. (1991), A fast algorithm for incremental distance calculation”, Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 1008-1014.
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process recursively, until the closest feature has been identified. This process is
performed for both solids, yielding their closest features and points.

C-space analysis

An algorithm was designed to construct a discretized representation of a mechanical
assembly’s free space. The algorithm generates the C-space of reachable, non
overlapping configurations that can be attained by a set of spatially or mechanically
related solids. A preliminary implementation of the algorithm was accomplished
during Phase One, to demonstrate the correctness and feasibility of the C-space
construction procedure. The C-spaces generated by the algorithm can facilitate the
design of mechanisms, industrial workspaces, and trajectories for assembly
operations. Examples of C-spaces generated by the algorithm to facilitate
mechanism design appear earlier in this report (see Figures 2, 3, and 4).

Figure 8 demonstrates how C-space analysis may also facilitate path planning for
assembly operations.

Figure 8: Path Planning Example

The rotor subassembly in Figure 8 consists of parts B and C of the alternator
assembly shown in Figure 5. The rotor shaft is assembled to the rotor wheel by way
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of an insert-and-twist operation, involving three sequential motions of the rotor shaft:
(1) a translational insertion into the slotted hole of the wheel, during which the key of
the shaft must be aligned with the slot, until the key has cleared the siot; (2) a 90-
degree rotation, to align the key with a second slot on the underside of the wheel;
and (3) a translation in the reverse direction, bringing the key to its final position
inside the second slot. Also shown in Figure 8 is the rotor assembly’s Cspace, which
is defined in the parameter space of the transiational and rotational motions just
described. The C-space has three main channels, corresponding to the three
assembly path segments. The width of each channel indicates the leeway in the
trajectory segment. The channels tend to widen at the points of transition to the next
channel. This phenomenon, which the C-space analysis quantifies for path-planning
purposes, reflects the varying amount of angular restriction placed upon the rotor
shaft as the key starts to enter or leave a wheel slot.

Our C-space construction algorithm combines the approaches of Handeys and ACT®
to construct a C-space tree representing the free space range of an ordered
sequence of joints in a mechanical assembly. Our version of the algorithm
generalizes the domain of Handey to consist of multiple chains of linkages, or
independent parts or subassemblies, as in Figure 8. Following Handey, the C-space
algorithm discretizes each joint parameter range into celis labeled FULL or EMPTY
(free), recursively expanding the EMPTY nodes in the tree to the next level.
Following the approach of ACT, the EMPTY nodes are divided into P/EMPTY
(possibly empty) or C/EMPTY (certainly empty) nodes, using swept volume
operations to determine if the entire subtree below an EMPTY node is free of
interference and need not be expanded. The current design supports the creation of
virtual mechanisms by including “model’ class methods for generating swept
volumes along, or about, a given transiational or rotational axis.

The range of interference between two solids is computed using Handey’s method of
merging the individual interference intervals of all edge-face pairs on the solids. The
advantage to this approach is that concavities in the solids do not complicate the
interference detection procedure. The disadvantage is that the number of edge-face
pairs is quadratic in the number of edges and faces on the two solids. To mitigate
the complexity of Handey's interference detection procedure, the algorithm’s
efficiency is improved by adopting techniques from ACT and elsewhere, such as the
monitoring of distance to the bounding volumes of potential obstacles, and the
efficient measurement of distances between the convex components of solids.

5 Lozano-Perez,, T., Jones, J.L, Mazer, E., O’'Donnel, P.A. (1992), Handey -- A Robot Task Planner, MIT Press,
Cambridge, Mass.

& Mazer, E., Pertin-Troccaz, J., Lefevre, J.-M., Faverjon, B., ljel, A., Bellier, C., Ferrari, B., Barret, M., Sellers, P.,
Lefebvre, J.-M.,, Hassoun, M., Alchami (1991), O., ""ACT: a robot programming environment”’, Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 1427-32.
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To compute the free space interval(s) for a link in the mechanism tree, the link's
interference interval with respect to each potential obstacle must be calculated. The
detailed calculation of interference intervals, which involves the pairing of all edges
and faces on the two solids, can be avoided whenever the sweeping link’s closest
distance to the obstacle is greater than zero. Following the technique used in ACT,
these distance measurements are performed upon the models’ bounding volumes,
which are topologically simpler than the models themselves. The measured
distances between a link and the bounding volumes of potential obstacles are
recorded for posterity, allowing future iterations of collision detection operations be
omitted when performed for nearby assembly configurations. As described in the
previous section, the distance measurements themselves are performed through an
efficient technique in which the closest features on the two solids are continuously
monitored. Once the closest features on the incrementally moving solids have been
identified as part of the first distance measurement procedure, the subsequent
identification of closest features during successive measurements requires only the
verification of a few half-space constraints. The verification or updating of closest
features requires a computation time that is minimal and does not vary the number
of surface features on the solids.

Combinatorial analysis

Algorithms have also been designed to determine the geometric feasibility of
assembly operation sequences. A mechanism tree constructed with “liaison” joints
may be decomposed into a variety of alternative subassemblies, depending on the
order in which the liaisons are severed. Feasible liaison orderings are represented in
an AND/OR graph, which contains a partial ordering of the liaison severing
operations. Traditional criteria for evaluating the feasibility of severing a liaison
include geometric and mechanical feasibility, stability of the resulting subassemblies,
and minimizing the number of directions from which assembly operations need to be
performed. We have focused on the criteria of geometric and mechanical feasibility,
which are at once the most crucial, and the most computationally challenging,
criteria. Geometric feasibility is concerned with the separability of two subassemblies
along a trajectory, and mechanical feasibility concerns accessibility of the fastener(s)
associated with a liaison.

To test the geometric feasibility of severing a liaison, the algorithm must be provided
with a path direction, along which one subassembly separates from the other
subassembly. The separation path, which is the reverse of the actual mating
trajectory, may be supplied a priori or computed from contact geometry and
heuristics. The geometric feasibility test is performed in two stages: (1) A local
mobility procedure searches for contacting surfaces on the two subassemblies and
determines if the surface relationships preclude relative motion along the given
trajectory. This procedure can be performed rapidly, ruling out many liaison severing
operations without proceeding to the global stage. (2) A global separability test is
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performed along the given trajectory to detect mterference between the two
subassemblies. Employing a graphical projection technlque global separability is
determined by finding the opposing faces on the two subassembilies’ solid models,
projecting the faces onto a plane, and detecting a non null intersection between the
projected faces. If one projected face falls entirely within the borders of the other,
the algorithm must also check to see if the former face lies entirely within a hole of
the latter, which would indicate a null intersection.

Once the geometric feasibility of separating a pair of subassemblies has been
verified, the mechanical feasibility must also be tested, to decide whether the
fastener(s) associated with the liaison are accessibie or blocked by adjacent parts.
At a minimum, mechanical feasibility testing is performed by determining the
geometric separability of the fastener from the assembly. If a model of the fastening
tool is supplied, the tool's accessibility to the liaison site is also evaluated.

Information Infrastructure

We explored several aspects of the collaborative infrastructure as part of this project
and as part of another SBIR Phase |l project titted Constraint Modeling Kernel
(CMK). CMK uses the Knowledge Query Manipulation Language (KQML) protocol to
support distributed, asynchronous access, query, and update of a repository by
multiple individuals. On top of this infrastructure, we implemented a way to generate
HTML forms from a versioned repository, accept KQML queries entered using
WWW clients, and designed down-loadable 3D viewing mechanisms.

7 Chen, C.L.P, Wichman, C.A. (1993), A systematic approach for design and planning of mechanical assemblies”,
AIEDAM, Vol 7, No. 1, pp. 19-36.
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STATUS

The following chart summarizes our progress in Phase | against goals that were set out
in the proposal that was funded.

Task Specification Design Prototyping

Unified Representation
- Class Lattice
- Analysis Algorithms

Concurrent Evaluation
- Combinatorics

Concurrent Evaluation
- Tolerancing

Content Based Retrieval
- Alternate Key Indexing

Content Based Retrieval
- Group Technology Mixins

Information Infrastructure

- WWW integration

- Content based asynchronous,
query and update (KQML)

Down-loadable applets
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PHASE TWO OBJECTIVES

Phase Two activities center around the development of an extensible framework to
support assembly-centered modeling functionalities related to the design and
analysis of mechanisms and assembly processes. The kernel will incorporate and
augment existing products devoted to solid modeling and data management.
Functionalities of the encompassing framework will include C-space analysis,
combinatorial modeling and evaluation of alternative assembly sequences, assembly
tolerancing, data management, alternative key modeling, and down-loadable 3D
controls over WWW. During Phase Two, the class lattice designed during Phase
One will be augmented to represent tolerances for solids and assembilies, and the
assembly-centered modeling facilities will be structured within a data modeling
framework. Activities planned for Phase Two include:

m Developing an interface to a data management program, to support data
modeling of mechanisms and assembly process designs.

= Implementing a content based alternative key modeling facility, based group
technology.

= Implementing navigation primitives to explore alternative paths in an AND/OR
graph of alternative assembly sequences

= Augmenting the class lattice to incorporate tolerances in the dimensions of parts
and assemblies, and developing tools to support the calculation of tolerance
stack-up.

= Generalizing the C-space algorithm to include part and joint tolerance variables
among the set of parameters which define a C-space.

s [Implementing the numerically-intensive portions of the C-space and geometric
feasibility algorithms in C, to improve their real-time performance.

= Implementing down-loadable 3D controls within WWW browsers
= Implementing a dynamic view creation mechanism that works across WWW
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APPENDIX

Several of the classes designed for geometric modeling, spatial analysis, and
representation of kinematic mechanisms are described below, in terms of their value
and function slots. For the sake of brevity, only the representative function slots are
listed.

Classes associated with geometric modeling

The modeler class

This class represents generic geometric modelers, whose capabilities include model
creation

and duplication, as well as CSG operations and sweeping operations. The modeler
class is intended to represent a modeler invoked by the C-space, combinatorial
analysis, and tolerancing functionalities, to copy or manipulate existing models, or to
generate new models representing the bounding boxes or swept volumes of existing
models.

Function slots:

= modeler-make-block < /ength, width, height>

Create a block model of the specified dimensions.
Related function slots:

modeler-make-cone,
modeler-make-cylinder,
modeler-make-ellipsoid
modeler-make-torus

modeler-union-models < model1, model2>
Create a new model that is the union of two existing models (destructive).

Related function slots:

modeler-intersect-models
modeler-subtract-models

= modeler-make-translational-sweep <points, distance>
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Create model by sweeping a set of points by a specified translational distance.
Related function slots:

modeler-make-rotational-sweep

The model class

This class represents 3-D geometric models and their topology. The model class is
used by the assembly-centered modeling functionalities to represent and access the
features of solid models contained in mechanism trees.

Value slots:

m model-faces

A list of faces associated with the model.
Related value slots:

model-edges

model-vertices

m model-volume
The real-valued volume of the model.
s model-b-box-size

A vector containing the 3 size dimensions of the bounding box of the model.
Related value slots:
model-b-box-center
Function slots:
m  model-duplicate <.>

.Create an identical copy of this model.

s model-translate <x, y, z>

Translate this model by the given displacement.
Related function slots:
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model-rotate
model-transform

The face class
This class represents faces in geometric models.
Value slots:

= face-loops

A list of loops associated with the face.

a face-normal
The outward normal of the face, represented as a 3-element vector

Related classes:

ioop
edge
vertex

Classes associated with spatial geometry
The plane class
This class represents planes in 3-space.
Value slots:
m  plane-vector

A 4-element vector containing the plane’s normal and distance to the origin.
Related accessors:

plane-normal
plane-scaler

Function slots:

m  plane-reverse < >
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Create a new plane whose normal is anti-parallel to this plane.

a plane-nearest-point <vector>

Compute the projection of a point vector onto this plane.
plane-point-relation-plane <function, vector>

Return true if a point vector .satisfies a specified relationship with this plane.s

The line class
This class represents lines in 3-space.
Value slots:

m line-start

A 3-element vector representing this line’s first defining point.
Related slots:
line-end
Related accessors:
line-tangent
Function slots:
m [ine-nearest-point <vector>

Compute the closest point on this line to a point vector.

m line-nearest-points-line <line>

Compute the closest point on this line to another line and vice-versa.

Classes associated with assembly modeling
The assembly-component-mixin class

This class represents assembly components, such as subassemblies or parts. This
class is added to the list of mixins of a given class, such as model/, in order to endow
the given class with assembly component attributes, such as a set of links.

Value slots:
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m  assembly-component-links

A list of links, each corresponding to a transformed joint.
The link class
This class represents half-joints in an assembly.
Value slots:

= link-component

.The assembly component associated with this fink.

= link-joint

.The joint associated with this link.
a link-frame

.The transformation from this link’'s assembly component and this link.
The joint class

This class represents joints, such as prismatic, rotary, or liaison joints, between the
components of an assembly. The joint class is used to compose kinematic
mechanisms and assemblies of geometrically-modeled parts.

Value slofs:

= joint-links

The pair of half-joints associated with this joint, which normally point to a pair of
assembly components.
Descendent classes:

revolute-joint
prismatic-joint
liaison-joint
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